Newton-Krylov Type Algorithm for Solving Nonlinear Least Squares Problems

نویسندگان

  • Mohammedi R. Abdel-Aziz
  • Mahmoud El-Alem
چکیده

The minimization of a quadratic function within an ellipsoidal trust region is an important subproblem for many nonlinear programming algorithms. When the number of variables is large, one of the most widely used strategies is to project the original problem into a small dimensional subspace. In this paper, we introduce an algorithm for solving nonlinear least squares problems. This algorithm is based on constructing a basis for the Krylov subspace in conjunction with a model trust region technique to choose the step. The computational step on the small dimensional subspace lies inside the trust region. The Krylov subspace is terminated such that the termination condition allows the gradient to be decreased on it. A convergence theory of this algorithm is presented. It is shown that this algorithm is globally convergent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Iterative Krylov-Dogleg Trust-Region Steps for Solving Neural Networks Nonlinear Least Squares Problems

This paper describes a method of dogleg trust-region steps, or restricted Levenberg-Marquardt steps, based on a projection process onto the Krylov subspaces for neural networks nonlinear least squares problems. In particular, the linear conjugate gradient (CG) method works as the inner iterative algorithm for solving the linearized Gauss-Newton normal equation, whereas the outer nonlinear algor...

متن کامل

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

An Overlapping Domain Decomposition Method for Parameter Identification Problems∗

A parallel fully coupled one-level Newton-Krylov-Schwarz method is investigated for solving the nonlinear system of algebraic equations arising from the finite difference discretization of inverse elliptic problems. Both L and H least squares formulations are considered with the H regularization. We show numerically that the preconditioned iterative method is optimally scalable with respect to ...

متن کامل

Iterative Scaled Trust-Region Learning in Krylov Subspaces via Pearlmutter's Implicit Sparse Hessian-Vector Multiply

The online incremental gradient (or backpropagation) algorithm is widely considered to be the fastest method for solving large-scale neural-network (NN) learning problems. In contrast, we show that an appropriately implemented iterative batch-mode (or block-mode) learning method can be much faster. For example, it is three times faster in the UCI letter classification problem (26 outputs, 16,00...

متن کامل

Recycling Subspace Information for Diffuse

We discuss the efficient solution of a large sequence of slowly varying linear systems arising in computations for diffuse optical tomographic imaging. In particular, we analyze a number of strategies for recycling Krylov subspace information for the most efficient solution. We reconstruct three-dimensional absorption and scattering information by matching computed solutions from a parameterize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009